ON SINGULARITIES OF MIP 3(c1, c2)

نویسنده

  • Giorgio Ottaviani
چکیده

Let MIP 3(c1, c2) be the moduli space of stable rank-2 vector bundles on IP 3 with Chern classes c1, c2. We prove the following results. 1) Let 0 ≤ β < γ be two integers, (γ ≥ 2), such that 2γ− 3β > 0; then MIP 3(0, 2γ 2 − 3β) is singular (the case β = 0 was previously proved by M. Maggesi). 2) Let 0 ≤ β < γ be two odd integers (γ ≥ 5), such that 2γ − 3β + 1 > 0; then MIP 3(−1, 2(γ/2) 2 − 3(β/2) + 1/4) is singular. In particular MIP 3(0, 5), MIP 3(−1, 6) are singular.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Zariski Pairs

Definition. A couple of complex reduced projective plane curves C1 and C2 of a same degree is said to make a Zariski pair, if there exist tubular neighborhoods T (Ci) ⊂ P of Ci for i = 1, 2 such that (T (C1), C1) and (T (C2), C2) are diffeomorphic, while the pairs (P, C1) and (P , C2) are not homeomorphic; that is, the singularities of C1 and C2 are topologically equivalent, but the embeddings ...

متن کامل

Desingularization of Some Moduli Scheme of Stable Sheaves on a Surface

Let X be a nonsingular projective surface over an algebraically closed field with characteristic 0, and H − and H+ ample line bundles on X separated by only one wall of type (c1, c2). Suppose the moduli scheme M(H−) of rank-two H − -stable sheaves with Chern classes (c1, c2) is non-singular. We shall construct a desingularization of M(H+) by using M(H−). As an application, we consider whether s...

متن کامل

Desingularization and Singularities of Some Moduli Scheme of Sheaves on a Surface

Let X be a nonsingular projective surface over C, and H− and H+ be ample line bundles onX in adjacent chamber of type (c1, c2). Let 0 < a− < a+ < 1 be adjacent minichambers, which are defined from H− and H+, such that the moduli scheme M(H−) of rank-two a−-stable sheaves with Chern classes (c1, c2) is non-singular. We shall construct a desingularization of M(a+) by using M(a−). As an applicatio...

متن کامل

Problem Set 2 Samuel

Let f(z) = 1 z+2z+2 and note that on the real axis f corresponds to the integrand above. From the equation x2 + 2x + 2 = 0 and the quadratic formula, we find that the singularities of f are −1± i and both are clearly simple poles. Let R > √ 2, c1 : z = x (−R ≤ x ≤ R), and c2 : z = Re (0 ≤ θ ≤ π). Then c = c1+c2 is a simple closed contour that contains −1+i in its interior (see figure). By the R...

متن کامل

Quotients of a Product of Curves by a Finite Group and Their Fundamental Groups

Introduction 1 1. Notation 8 2. Finite group action on products of curves 9 3. The fundamental group of (C1 × C2)/G. 12 4. The structure theorem for fundamental groups of quotients of products of curves 14 5. The classification of standard isotrivial fibrations with pg = q = 0 where X = (C1 × C2)/G has rational double points 20 5.1. The singularities of X 21 5.2. The signatures 23 5.3. The poss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995